Navigation and Spatial Cognition

In this research area, virtual environments are created to provide complex and ecologically-valid navigational experiences. Virtual environments enable navigation researchers to achieve both control and ecological validity in naturalistic settings, while also providing the flexibility to construct multiple environments quickly and easily. We study Navigation under different instructions, such as free exploration, attending to certain properties of the environment, or time stress. Current research in this area is also concerned with individual differences in navigation abilities and strategies and the effects of aging on navigation and spatial memory.

Selected Publications

He, C., Boone, A. P., Hegarty M. (2023). Measuring configural spatial knowledge: individual differences in correlations between pointing and shortcutting. Psychonomic Bulletin & Reviewhttps://doi.org/10.3758/s13423-023-02266-6

He, C., Chrastil, E. R., & Hegarty, M. (2022). A new psychometric task measuring spatial perspective taking in ambulatory virtual reality. Frontiers in Virtual Reality. DOI: https://doi.org/10.3389/frvir.2022.971502

Yu, S., Boone, A. P. He, C., Davis, R. C., Hegarty, M., Chrastil, E. R. &  Jacobs, E. G. (2021). Age-related changes in spatial navigation are evident by midlife and differ by sex. Psychological Science, 32(5), 692-704.

Boone, A.P., Maghen, B. & Hegarty, M. (2019). Instructions matter: Individual differences in navigation strategy and ability. Memory & Cognition. PDF 

Chrastil, E. R., Nicora, G. L., & Huang, A. (2019). Vision and proprioception make equal contributions to path integration in a novel homing task. Cognition, 192. doi.org/10.1016/j.cognition.2019.06.010

Boone, A.P., Gong, X & Hegarty, M. (2018). Sex differences in navigation strategy and efficiency. Memory & Cognition. PDF 

Chrastil, E. R., Sherrill, K.R., Aselcioglu, I., Hasselmo, M.E., & Stern, C.E. (2017). Individual differences in human path integration abilities correlate with gray matter volume in retrosplenial cortex, hippocampus, and medial prefrontal cortex. eNeuro, 4(2), doi: 10.1523/ENEURO.0346-16.2017

Chrastil, E.R., & Warren, W.H. (2017). Rotational error in path integration: Encoding and execution errors in angle reproduction. Experimental Brain Research 235, 1885-1897. PDF 

Chrastil, E. R., Sherrill, K.R., Hasselmo, M.E., & Stern, C.E. (2016). Which way and how far? Tracking of translation and rotation information for human path integration. Human Brain Mapping, 37, 3636-3655. PDF 

Shine, J. P., Valdés-Herrera, J. P., Hegarty, M., & Wolbers, T. (2016). The human retrosplenial cortex and thalamus code head direction in a global reference frame. The Journal of Neuroscience36(24), 6371-6381. doi: https://doi.org/10.1523/JNEUROSCI.1268-15.2016